Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Infectious Microbes and Diseases ; 4(3):85-93, 2022.
Article in English | EMBASE | ID: covidwho-20232428
2.
Pharmaceutical and Biomedical Research ; 6(SpecialIssue1):1-4, 2020.
Article in English | EMBASE | ID: covidwho-2323308
3.
Egyptian Journal of Otolaryngology ; 38(1) (no pagination), 2022.
Article in English | EMBASE | ID: covidwho-2323141

ABSTRACT

Objectives: Since its first appearance in Wuhan December 2019, SARS-CoV2 virus received great attention due to its severe symptoms and high spread causing COVID-19 disease which spread all over the world like a pandemic. The causative virus is capable of human-to-human transmission via droplet and direct contact suggesting that upper respiratory tract is the main site to virus manifestations. There is a great diversity in its clinical picture, although the severe respiratory and neurological symptoms are commonly present;however, other symptoms are present. Although otological manifestations are reported in many COVID-19 patients even in asymptomatic cases, they did not receive much attention compared with other critical manifestations. In this article, we paid our attention specifically to the otological manifestations of COVID-19 and their relevance either to the virus infection, treatment, or vaccination through literature review. Conclusion(s): COVID-19 disease has a deleterious effect on the inner ear. This effect is not only due to SARS-Cov-2 infection, but it could be also due to the ototoxic drugs used for treatment. The COVID-19 vaccinations are found to be implicated in the otological symptoms in some cases.Copyright © 2022, The Author(s).

4.
Adverse Drug Reactions Journal ; 22(3):142-146, 2020.
Article in Chinese | EMBASE | ID: covidwho-2305958
5.
Jundishapur Journal of Natural Pharmaceutical Products ; 18(1) (no pagination), 2023.
Article in English | EMBASE | ID: covidwho-2302219

ABSTRACT

Background: Today, various drugs have been investigated as the primary or complementary treatment for coronavirus disease 2019 (COVID-19). N-acetylcysteine (NAC) has been used as a mucolytic in pulmonary diseases. This drug apparently contributes to the retrieval of the intracellular antioxidant system. Objective(s): This study aimed to determine the efficacy of NAC in severe COVID-19 patients admitted to the intensive care unit (ICU). Method(s): This single-blinded randomized controlled phase III clinical trial included 40 patients with confirmed COVID-19 (based on polymerase chain reaction) admitted to the Shahid Mohammadi Hospital's ICU, Bandar Abbas, Iran, in 2020. All cases had severe COVID-19. They were allocated randomly to two equal groups. Patients in the control group received standard drug therapy based on the treatment protocol of the national COVID-19 committee, while those in the NAC group received a single dose of intravenous NAC (300 mg/kg) upon admission to the ICU in addition to standard drug treatment. Clinical status and laboratory tests were done on admission to the ICU and then 14 days later or at discharge without knowing the patient grouping. Result(s): The two groups were comparable regarding age, gender, and other baseline laboratory and clinical parameters. At the final evaluation, respiratory rate (21.25 +/- 4.67 vs. 27.37 +/- 6.99 /min) and D-dimer (186.37 +/- 410.23 vs. 1339.04 +/- 2183.87 ng/mL) were significantly lower in the NAC group (P = 0.004 and P = 0.030, respectively). Also, a lower percentage of patients in the NAC group had lactate dehydrogenase (LDH) <= 245 U/L (0% vs. 25%, P = 0.047). Although the length of ward and ICU stay was shorter in the NAC group than in controls, the difference was statistically insignificant (P = 0.598 and P = 0.629, respectively). Mortality, on the other hand, was 75% in the control group and 50% in the NAC group, with no statistically significant difference (P = 0.102). Concerning the change in the study parameters, only the decrease in diastolic blood pressure (DBP) was significantly higher with NAC (P = 0.042). The intubation and mechanical ventilation rates were higher, while oxygen with mask and nasal oxygen rates were lower with NAC, but the difference was statistically insignificant. Conclusion(s): Based on the current research, NAC is related to a significant decrease in RR, D-dimer, and DBP in severe COVID-19. Also, LDH was significantly lower in the NAC group than in the controls. More research with larger sample sizes is needed to validate the current study results.Copyright © 2023, Author(s).

6.
Adverse Drug Reactions Journal ; 22(3):197-200, 2020.
Article in Chinese | EMBASE | ID: covidwho-2298985
7.
Adverse Drug Reactions Journal ; 22(6):350-354, 2020.
Article in Chinese | EMBASE | ID: covidwho-2298978

ABSTRACT

Objective: To explore the safety of chloroquine phosphate treatment in patients with novel coronavirus pneumonia (COVID-19) and provide references for clinical safety medication. Method(s): Active monitoring for adverse events (AE) was carried out in the Third People's Hospital of Shenzhen from February to March 2020 during the treatment with chloroquine phosphate in patients with COVID-19. The causal relationship between AE and chloroquine phosphate was evaluated. Result(s): A total of 33 patients were entered in the study, including 16 males and 17 females, aged (43+/-13) years. The clinical types of COVID-19 in 26 patients (78.8%) were mild, in 7 patients (21.2%) were common. There were 7 patients (21.2%) with basic diseases, including 6 with hypertension and 1 with hypothyroidism. The treatment course of chloroquine phosphate was (8+/-3) days. During the treatment, a total of 28 cases of AE in 24 (72.7%) of the 33 patients which were probably or possibly related to chloroquine phosphate were detected. The clinical manifestations of AE included abnormal liver function (8/33, 24.2%), gastrointestinal reactions (8/33, 24.2%), neuropsychiatric system reactions (8/33, 24.2%), cardiovascular system reactions (5/33, 15.2%), eye and vision abnormality (2/33, 6.1%), and skin injury (1/33, 3.0%). The severity of AE was grade 1 or grade 2. After drug withdrawal or symptomatic treatments, all the patients' symptoms were improved and the laboratory tests results returned to normal. Conclusion(s): The adverse effects of chloroquine phosphate in the treatment of patients with COVID-19 are mild, but it is still necessary to strengthen the monitoring.Copyright © 2020 by the Chinese Medical Association.

8.
Chinese Journal of Clinical Infectious Diseases ; 13(4):305-314, 2020.
Article in Chinese | EMBASE | ID: covidwho-2270125

ABSTRACT

2019-nCoV has a up to 96% homology with the gene sequence of a bat coronavirus. By comparing its 7 conserved non-structural proteins, it is found that 2019-nCoV belongs to SARS related coronaviruses(SARSr-CoV). The receptor for 2019-nCoV entering cells is the same as that for SARSr-CoV, and angiotensin-converting enzyme 2 (ACE2) is a common cross-genus receptor. This article first elaborates the interspecies transmission and genetic variation, then briefly discusses the receptors on the surface of human cells (such as ACE2 and APP4), which cause human infection and encode five proteins in the viral genome, therefore are important targets for development of antiviral drugs. The article reviews eight promising anti-coronavirus drugs, including three anti-HIV drugs (Lopinavir/Ritonavir, Danoprevir/Ritonavir, Darunavir), two anti-Ebola virus drugs (Remdesivir, Galidesivir), two anti-influenza virus drugs (Arbidol, Favipiravir) and one anti-malarial drug (chloroquine phosphate). Among them, Remdesivir, Abidol and Favipiravir have strong inhibitory effects on 2019-nCoV, they may be the most promising drugs under investigation.Copyright © 2020 by the Chinese Medical Association.

9.
Chinese Journal of Clinical Infectious Diseases ; 13(4):305-314, 2020.
Article in Chinese | EMBASE | ID: covidwho-2270124

ABSTRACT

2019-nCoV has a up to 96% homology with the gene sequence of a bat coronavirus. By comparing its 7 conserved non-structural proteins, it is found that 2019-nCoV belongs to SARS related coronaviruses(SARSr-CoV). The receptor for 2019-nCoV entering cells is the same as that for SARSr-CoV, and angiotensin-converting enzyme 2 (ACE2) is a common cross-genus receptor. This article first elaborates the interspecies transmission and genetic variation, then briefly discusses the receptors on the surface of human cells (such as ACE2 and APP4), which cause human infection and encode five proteins in the viral genome, therefore are important targets for development of antiviral drugs. The article reviews eight promising anti-coronavirus drugs, including three anti-HIV drugs (Lopinavir/Ritonavir, Danoprevir/Ritonavir, Darunavir), two anti-Ebola virus drugs (Remdesivir, Galidesivir), two anti-influenza virus drugs (Arbidol, Favipiravir) and one anti-malarial drug (chloroquine phosphate). Among them, Remdesivir, Abidol and Favipiravir have strong inhibitory effects on 2019-nCoV, they may be the most promising drugs under investigation.Copyright © 2020 by the Chinese Medical Association.

10.
Chinese Journal of Clinical Infectious Diseases ; 13(4):305-314, 2020.
Article in Chinese | EMBASE | ID: covidwho-2270123

ABSTRACT

2019-nCoV has a up to 96% homology with the gene sequence of a bat coronavirus. By comparing its 7 conserved non-structural proteins, it is found that 2019-nCoV belongs to SARS related coronaviruses(SARSr-CoV). The receptor for 2019-nCoV entering cells is the same as that for SARSr-CoV, and angiotensin-converting enzyme 2 (ACE2) is a common cross-genus receptor. This article first elaborates the interspecies transmission and genetic variation, then briefly discusses the receptors on the surface of human cells (such as ACE2 and APP4), which cause human infection and encode five proteins in the viral genome, therefore are important targets for development of antiviral drugs. The article reviews eight promising anti-coronavirus drugs, including three anti-HIV drugs (Lopinavir/Ritonavir, Danoprevir/Ritonavir, Darunavir), two anti-Ebola virus drugs (Remdesivir, Galidesivir), two anti-influenza virus drugs (Arbidol, Favipiravir) and one anti-malarial drug (chloroquine phosphate). Among them, Remdesivir, Abidol and Favipiravir have strong inhibitory effects on 2019-nCoV, they may be the most promising drugs under investigation.Copyright © 2020 by the Chinese Medical Association.

11.
Coronaviruses ; 3(2):10-22, 2022.
Article in English | EMBASE | ID: covidwho-2266130

ABSTRACT

Background: Currently, the present world is facing a new deadly challenge from a pandemic disease called COVID-19, which is caused by a coronavirus named SARS-CoV-2. To date, no drug or vaccine can treat COVID-19 completely, but some drugs have been used primarily, and they are in different stages of clinical trials. This review article discussed and compared those drugs which are running ahead in COVID-19 treatments. Method(s): We have explored PUBMED, SCOPUS, WEB OF SCIENCE, as well as press releases of WHO, NIH and FDA for articles related to COVID-19 and reviewed them. Result(s): Drugs like favipiravir, remdesivir, lopinavir/ritonavir, hydroxychloroquine, azithromycin, ivermectin, corticosteroids and interferons have been found effective to some extent, and partially approved by FDA and WHO to treat COVID-19 at different levels. However, some of these drugs have been disapproved later, although clinical trials are going on. In parallel, plasma therapy has been found fruitful to some extent too, and a number of vaccine trials are going on. Conclusion(s): This review article discussed the epidemiologic and mechanistic characteristics of SARS-CoV-2, and how drugs could act on this virus with the comparative discussion on progress and drawbacks of major drugs used till date, which might be beneficial for choosing therapies against COVID-19 in different countries.Copyright © 2022 Bentham Science Publishers.

12.
Tanaffos ; 21(2):113-131, 2022.
Article in English | EMBASE | ID: covidwho-2261787

ABSTRACT

The 2019 novel coronavirus (SARS-CoV-2) causes severe pneumonia called COVID-19 and leads to severe acute respiratory syndrome with a high mortality rate. The SARS-CoV-2 virus in the human body leads to jumpstarting immune reactions and multi-organ inflammation, which has poorer outcomes in the presence of predisposing conditions, including hypertension, dyslipidemia, dysglycemia, abnormal adiposity, and even endothelial dysfunction via biomolecular mechanisms. In addition, leucopenia, hypoxemia, and high levels of both cytokines and chemokines in the acute phase of this disease, as well as some abnormalities in chest CT images, were reported in most patients. The spike protein in SARS-CoV-2, the primary cell surface protein, helps the virus anchor and enter the human host cells. Additionally, new mutations have mainly happened for spike protein, which has promoted the infection's transmissibility and severity, which may influence manufactured vaccines' efficacy. The exact mechanisms of the pathogenesis, besides molecular aspects of COVID-19 related to the disease stages, are not well known. The altered molecular functions in the case of immune responses, including T CD4+, CD8+, and NK cells, besides the overactivity in other components and outstanding factors in cytokines like interleukin-2, were involved in severe cases of SARS-CoV-2. Accordingly, it is highly needed to identify the SARS-CoV-2 bio-molecular characteristics to help identify the pathogenesis of COVID-19. This study aimed to investigate the bio-molecular aspects of SARS-CoV-2 infection, focusing on novel SARS-CoV-2 variants and their effects on vaccine efficacy.Copyright © 2022 NRITLD, National Research Institute of Tuberculosis and Lung Disease, Iran.

13.
Chinese Journal of Clinical Infectious Diseases ; 13(2):102-108, 2020.
Article in Chinese | EMBASE | ID: covidwho-2287563

ABSTRACT

Antiviral therapy is important for COVID-19. Currently, the anti-2019-nCoV drugs in clinical trials include broad-spectrum antiviral drugs (alpha interferon and ribavirin), hemagglutinin inhibitors (arbidol), human immunodeficiency virus protease inhibitors (lopinavir/ritonavir and darunavir/cobicistat), nucleoside analogues (favipiravir and remdesivir) and antimalarial drug (chloroquine);while liver damage may occur in some patients with the medication. This article reviews the research on liver damage associated with anti-2019-nCoV drugs, aiming at promoting the safe and effective antiviral therapy for COVID-19 patients.Copyright © 2020 by the Chinese Medical Association.

14.
Journal of Nephropharmacology ; 9(2) (no pagination), 2020.
Article in English | EMBASE | ID: covidwho-2285086

ABSTRACT

Implication for health policy/practice/research/medical education: To treat COVID-19, the first choice should be antiviral drugs and sometimes a small dose of anti-inflammatory drugs to reduce inflammation. In this regard, chloroquine has both features including antiviral activity and anti-inflammatory effect.Copyright © 2020 The Author(s);.

15.
Turkish Journal of Biochemistry ; 47(5):656-664, 2022.
Article in English | EMBASE | ID: covidwho-2227748

ABSTRACT

Objectives: The aim is to investigate the usefulness of lactate dehydrogenase (LDH)/Albumin, LDH/Lymphocyte and LDH/Platelet ratios on the prognosis of coronavirus disease (COVID-19) Alpha (B.1.1.7) variant pneumonia. Method(s): A total of 113 patients who were diagnosed with COVID-19 pneumonia and 60 healthy control group were included in this study. The cases were divided into 2 as classic COVID-19 group, and COVID-19 B.1.1.7 variant group. Complete blood count (CBC) and biochemical parameters of the patients were analyzed retrospectively. Patients with COVID-19 B.1.1.7 variant group were also grouped according to the length of stay in the hospital and the days of hospitalization. Result(s): LDH/Albumin, LDH/Platelet, and LDH/Lymphocyte ratios were found to be higher in COVID-19 B.1.1.7 variant group when compared to the control group (p<0.001). The ferritin, neutrophils/lymphocyte (NLR) ratio, procalcitonin (PCT) and LDH/Albumin had the highest area under the curve (AUC) values in the COVID-19 B.1.1.7 variant group (0.950, 0.802, 0.759, and 0.742, respectively). Albumin, Lymphocytes and hemoglobin values were significantly higher in the COVID-19 B.1.1.7 variant group than in the classic COVID-19 group (p<0.05). Conclusion(s): LDH/Albumin and LDH/Lymphocyte ratios may be useful for clinicians in predicting the risk of progression to pneumonia in COVID-19 B.1.1.7 variant patients. Copyright © 2022 the author(s), published by De Gruyter.

16.
Kathmandu University Medical Journal ; 18(2 COVID-19 Special Issue):80-89, 2020.
Article in English | EMBASE | ID: covidwho-2234127

ABSTRACT

On December 31, 2019, the China Health Authority alerted WHO about 27 cases of pneumonia of unknown etiology in Wuhan City. It was subsequently named Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) and the disease as Coronavirus Disease 2019 (COVID-19). The disease has now become pandemic. Current review was done to summarize information on COVID-19 published in various scientific works. Electronic databases containing medical articles viz., MEDLINE/PubMed, Google Scholar etc were searched using the Medical Subject Headings 'COVID-19', '2019-nCoV', 'coronavirus' and 'SARS-CoV-2' during antecedent one year. All study designs were incorporated to harvest clinical, laboratory, imaging, and hospital course data. The intermediate host of the virus is still unknown. Respiratory droplets produced by the patient is main source of transmission. SARS-CoV-2 invades the airway epithelium by binding to angiotensin-converting enzyme-2 (ACE2) receptor with Coronavirus spike (S) protein. Most common symptoms are fever (98%), dry cough (77%), and dyspnea (63.5%). Later, complications like acute respiratory distress syndrome, septic shock etc may occur. Advanced age and co-morbidities like Diabetes have higher mortality otherwise Case Fatality Rate is 2-3%. RT-PCR is the diagnosis of choice. Since no universally accepted registered drug or FDA approved vaccine has come by now, prevention is the key. Hands should be regularly cleaned with soap or alcohol based sanitizer and in public, Nose and Mouth should be covered with face-mask and social distance of one meter should be maintained. While Vaccines are expected by early 2021, we should not forget to take comprehensive measures to prevent future outbreaks of zoonotic origin. Copyright © 2020, Kathmandu University. All rights reserved.

SELECTION OF CITATIONS
SEARCH DETAIL